
Learning Language Equations and
Regular Languages using Alternating

Finite Automata∗

Aziz Fellah and Ajay Bandi
School of Computer Science and Information Systems

Northwest Missouri State University
Maryville, MO 64468

{afellah,ajay}@nwmissouri.edu

Abstract

Learning regular languages using several classes of finite state ma-
chines and different learning framework has been one of the objective
in the theory of computation and computability courses. Alternating fi-
nite automata (AFA) are an appealing abstraction and a key ingredient
in modeling many software systems and parallel computations. Despite
the fact that AFA accept regular languages, they have several interesting
properties due to their transition structures such as their mode of accept-
ing is quite different from that of deterministic finite automata (DFA)
and nondeterministic finite automata (NFA); and importantly, AFA are
double-exponentially more succinct than DFA. This paper presents a new
paradigm to learning regular languages and solving language equations
using AFA. Such models can be described naturally as a set of equations
that parallels the solutions of algebraic equations. Moreover, the solution
of such systems of equations is the class of regular languages.

1 Introduction

Despite the rapid pace of the technology which has significantly altered many
aspects of the CS programs, the theory of computation and its cluster of re-
lated disciplines continue to play a foundational role in the field of computer

∗Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

19

science. Most undergraduate CS programs offer a course in theory of compu-
tation, alongside with formal languages, automata, and computability. Such
a course expose students to different types of abstract models and the foun-
dations of computation. Regular languages is an important class of formal
languages in the Chomsky’s hierarchy and are the first concepts to be taught
in the theory of computation and computability courses. A regular language
can be expressed symbolically with a regular expression, a regular grammar,
and conventional models, namely deterministic finite automata (DFA) and non-
deterministic finite automata (NFA). A vast amount of literature is devoted
to learning formal and regular languages [10] which are used in parsing and
designing programming languages. The concept of alternation [5, 9, 7] extends
the notion of nondeterminism by including the universal quantifiers in addi-
tion to the existential quantifiers. A formalization of this concept yields the
definition of alternating finite automata (AFA) which form a powerful abstrac-
tion layer beyond nondeterminism. AFA, a generalization of NFA, become an
influential model that has received significant interests inside and outside the
classroom, from instructors and researchers [11, 6, 9, 7, 8, 3, 1]. Similarly to
DFA and NFA, AFA are equally expressive as the class of regular languages.
Aside from the applications in modeling many systems and phenomena, AFA
models capture different level of abstractions that are used in software system
designs, model checking, and various areas of computer science [11, 6, 8]. While
all these formalisms, DFA, NFA and AFA, are equivalent in expressive power
terms of language recognition, they differ in other terms. Importantly, NFA
are exponentially more succinct than DFA but AFA are double-exponentially
more succinct than DFA. Language equations are equations over language op-
erations where both the constants and variables are languages. Usually, they
are formalized through various classes of finite state machines such as DFA and
NFA using two operations, union and concatenation. The relevant properties
of language equations, such that existence and uniqueness of their solutions
have been established in the literature [7, 4].

An alphabet is a finite, nonempty set. The elements of an alphabet are
called symbols or letters. A word (string) over an alphabet Σ is a finite sequence
consisting of zero or more letters of Σ. The word consisting of zero letters is
called the empty word , denoted by ε. By definition, |ε| = 0. The set of all
words (respectively all nonempty words) over an alphabet Σ is denoted by Σ∗

(Σ+). Given a language L over an alphabet Σ, the Kleene closure (Kleene star
“∗”) of L is the set L∗ =

⋃∞
i=0 L

i and the positive Kleene closure (Kleene plus
“+”) of L is L+ =

⋃∞
i=1 L

i. The language L = Σ∗ \ L is the complement of
L. The concatenation of two words w1 and w2 is the word consisting of the
symbols of w1 followed by the symbols of w2, denoted w1 · w2. The length of
a word w, denoted by |w|, is the number of letters in w. We denote by the

20

symbol B the Boolean semiring, B = {0, 1}. Let Q be a set. Then BQ is the
set of all mappings of Q into B. Note that u ∈ BQ can also be considered as a
Q-vector over B.

The remaining of the paper is organized as follows. In section 2, we describe
alternating finite automata and state some definitions and results that can
be used in subsequent sections. Section 3 introduces systems of equations to
represent AFA. These equations, and not the transition diagrams, are in essence
the underlying algebraic framework that makes AFA appealing from the point
of view of representation and flexibility. In section 4, we exhibit constructions
for the Boolean operations on AFA. Section 5, shows such systems of equations
parallel the solution of algebraic equations. In particular, the solution of such
systems of equations is the class of regular languages. We conclude the paper
with some potential discussions in section 6. This paper is based on our original
work on AFA but summarized in a compact form given the limitation on the
conference page number.

2 Alternating Finite Automata

NFA are a generalization of DFA by allowing a state to have multiple outgoing
transitions labeled with the same symbol or a ε-transition. A string is accepted
by an NFA if there exists some path that leads to an accepting state. In
a nondeterministic computation all configurations are existential in the sense
that there exists at least one successful path that leads to acceptance. An
alternating finite automaton (AFA) may have also universal configurations
from which the computation branches into a number of parallel computations
that must all lead to acceptance. We represent existential and universal choices
by a Boolean formula. Formally, let Q be a set, we use BQ to be the set of
all Boolean formulas over Q. That is, BQ is built from the elements q ∈ Q, 1,
and 0 using the binary operations and (∨), or (∧), and not (−). If in a given
state q the AFA reads an input symbol a, it will activate all states of the AFA
to work on the remaining part of the input in parallel. Once the states have
completed their tasks, q will evaluate their results using a Boolean function
and pass on the resulting value to the state by which it was activated. A word
w is accepted if the starting state computes the value of 1. Otherwise, it is
rejected. We now formalize this idea.

Definition 1 An alternating finite automaton (AFA) is a quintuple A =
(Q,Σ, s, F, g) where (a) Q is a finite set, the set of states; (b) Σ is an al-
phabet, the input alphabet; (c) s ∈ Q is the starting state; (d) F ⊆ Q is the set
of final states; (e) g is a mapping of Q into the set of all mappings of Σ×BQ
into B.

21

We turn to defining the sequential behavior of an AFA. For q ∈ Q and a ∈ Σ,
let gq(a) be the Boolean function defined as:

gq(a, u) : Σ× BQ → B

where a ∈ Σ and u ∈ BQ. Also, for a ∈ Σ, q ∈ Q, and u ∈ BQ, gq(a, u) =
gq(a)(u), is equals to either 0 or 1. Now define f ∈ BQ by the condition

fq = 1 ⇐⇒ q ∈ F.

f is called the characteristic vector of F . We extend g to a mapping of Q into
the set of all mappings of Σ∗ × BQ into B as follows:

gq(w, u) =

{
uq if w = ε,
gq(a, g(v, u)) if w = av with a ∈ Σ and v ∈ Σ∗

where w ∈ Σ∗ and u ∈ BQ.
Definition 2 Let A = (Q,Σ, s, F, g) be an AFA. A word w ∈ Σ∗ is accepted
by A if and only if gs(w, f) = 1. The language accepted by A is the set
L(A) = {w | w ∈ Σ∗ ∧ gs(w, f) = 1}.

Example 1 Consider the following AFA A = (Q,Σ, s, F, g) where Q =
{q0, q1, q2}, Σ = {a, b}, s = {q0}, F = q2, and g is given by the following
table. The example shows a run of the AFA on the input bab.

State a b
q0 q0 ∧ q1 q1 ∨ q2

q1 q0 q0 ∧ q2

q2 q0 ∨ q1 1
In the same example of AFA, we have drawn the existential states as ∨ and
the universal states as ∧. The AFA can have multiple runs on a given input
where both of these choices coexist. Notice that the run branches in parallel
to two states, q0 and q2 on the second input symbol b from q1.

Example 2 Let w = bab be a string. We will check whether w is accepted by
the NFA A.

gq0(bab, f)

= gq1(ab, f) ∨ gq2(ab, f)

= gq0(b, f) ∨ (gq0(b, f) ∨ gq1(b, f))

= (gq1(ε, f) ∨ gq2(ε, f)) ∨ ((gq1(ε, f) ∨ gq2(ε, f)) ∨ (gq0(ε, f) ∧ gq2(ε, f)))

= (0 ∨ 1) ∨ ((0 ∨ 1) ∨ (0 ∧ 1)) = (0 ∨ 0) ∨ ((0 ∨ 0) ∨ (1 ∧ 1))

= (0) ∨ ((0) ∨ (1)) = 0 ∨ (0 ∨ 0) = 0 ∨ (0) = 0 ∨ 1

= 1

22

Therefore the string bab is accepted.

Proposition 1 [9, 4] AFA are equivalent in term of language recognition power
to NFA and DFA. That is, they can only accept regular languages.

Proposition 2 AFA are double-exponentially more succinct that DFA.

Let A = (Q,Σ, S, F, g) be an AFA to simulate an equivalent DFA A′ =

(Q′,Σ, S′, F ′, g′), Q′ needs 22|Q|
Boolean functions on Q. For instance, an

NFA may be exponentially smaller than the minimal DFA, and an AFA may
be doubly-exponentially smaller than the minimal DFA.

3 Representing AFA by Systems of Language Equations

Language equations are equations defined over languages where both the con-
stants and variables are formal languages. It is well-known that regular lan-
guages can be described as the solutions of systems of one-sided linear equations
in an appropriate semiring [7, 4, 2]. We show that AFA can be readily rep-
resented by systems of equations. However, the systems of equations to be
considered involve Boolean expressions over a finite set X of variables and the
symbols of an alphabet Σ. The main result of this section is that the solu-
tions of such systems of equations are precisely the regular languages and that,
indeed, there is a natural correspondence between AFA and such systems of
equations. In the sequel we associate with each AFA a system of equations such
that the languages accepted by the AFA with various start states constitute
the unique fixpoint of the system of equations.

Let A = (Q,Σ, s, F, g) be an AFA. For q ∈ Q, we use xq to denote a
boolean variable associated with the state q and xq to denote its negation. Let
XQ = {xq | q ∈ Q}. Then the following system L(A) of equations can be used
to describe A:

L(A) =

{
Xq =

∑
a∈Σ

a · gq(a,X) + ε(fq)

}
q ∈ Q

(1)

ε(fq) =

{
ε if fq = 1
∅ otherwise

In the system L(A) of equations, the Boolean function gq(a,X) is considered as
being given by a Boolean expression in B(XQ). Any system of language equa-
tions of the above form has a unique solution for each XQ, q ∈ Q. Furthermore,
the solution for each XQ is regular.

23

4 Boolean Operations on AFA

Of course, as every AFA language is regular, the class of AFA languages is
closed under the Boolean operations. However, this is only a “surface” re-
sult. Rather than this type of existence result one would like to have concrete
constructions for AFA.

Let A = (Q,Σ, s, F, g) be an AFA. First we construct the complement of A

A = (Q,Σ, s, F ′, g′)

such that L(A) = Σ∗ \ L(A). The set F ′ of final states is defined by the
condition

q ∈ F ′ ⇐⇒
{
q ∈ F, if q 6= s,
q 6∈ F, if q = s,

for q ∈ Q. For u ∈ BQ, let u′ be the mapping given by

u′q =

{
uq, if q 6= s,
uq, if q = s,

for q ∈ Q. The function g′ is given by

g′q(a, u) =

{
gq(a, u′), if q 6= s,

gq(a, u), if q = s,

where q ∈ Q, a ∈ Σ, and u ∈ BQ.

Theorem 1 L(A) = Σ∗ \ L(A).

Proof: We prove that g′(w, f ′) = g(w, f)′ for all w ∈ Σ∗. This is obviously
true for w = ε. Now assume that the statement holds for v ∈ Σ∗ and consider
w = av with a ∈ Σ. For q ∈ Q, one has

g′q(w, f ′) = g′q(a, g(v, f ′)′) = g′q(a, g(v, f)′) = gq(w, f)′.

Thus, g′s(w, f ′) = gs(w, f), that is, w ∈ L(A) ⇐⇒ w 6∈ L(A).

Example 3 Let the AFA A = (Q,Σ, s, F, g), where Q = {1, 2, 3, 4}, Σ =
{a, b}, s = 1, F = {1, 4} and g is given as follows. A is represented by L(A).
We construct the complement of A, A, that accepts L(A).

L(A) : x1 = a · (x2 ∨ x3) + b · (x2 ∨ x3 ∨ x4) + ε

x2 = a · (x2 ∨ x3 ∧ x4) + b · (x2 ∧ x3 ∧ x4)

x3 = a · (x2 ∧ x3 ∨ x3 ∧ x4 ∨ x3 ∧ x4) + b · (x2 ∧ x3 ∧ x4)

x4 = a · (x2 ∧ x3 ∨ x2 ∧ x4 ∨ x3 ∧ x4) + b · (x2 ∧ x3 ∧ x4) + ε

24

L(A) : x1 = a · (x2 ∧ x3) + b · (x2 ∧ x3 ∧ x4)

x2 = a · (x2 ∨ x3 ∧ x4) + b · (x2 ∧ x3 ∧ x4)

x3 = a · (x2 ∧ x3 ∨ x3 ∧ x4 ∨ x3 ∧ x4) + b · (x2 ∧ x3 ∧ x4)

x4 = a · (x2 ∧ x3 ∨ x2 ∧ x4 ∨ x3 ∧ x4) + b · (x2 ∧ x3 ∧ x4) + ε

Our next construction is for the union of languages accepted by AFA. For
i = 1, 2 let A(i) = (Q(i),Σ, s(i), F (i), g(i)) be two AFA with disjoint state sets.
We construct an AFA

A = A(1) ∨A(2) = (Q,Σ, s, F, g)

such that L(A(1) ∨ A(2)) = L(A(1)) ∪ L(A(2)). Let s be a new state symbol,
s 6∈ Q(1) ∪Q(2), let

Q = Q(1) ∪Q(2) ∪ {s},

F =

{
F (1) ∪ F (2), if s(1) 6∈ F (1) and s(2) 6∈ F (2),
F (1) ∪ F (2) ∪ {s}, otherwise.

The function g is given as follows

gq(a, u) =

{
g

(i)
q (a, u

∣∣
Q(i)), if q ∈ Q(i) with i ∈ {1, 2},

g
(1)

s(1)
(a, u

∣∣
Q(1)) ∨ g

(2)

s(2)
(a, u

∣∣
Q(2)), if q = s.

where q ∈ Q, a ∈ Σ, and u ∈ BQ.

Theorem 2 L(A(1) ∨A(2)) = L(A(1)) ∪ L(A(2)).

Proof: By induction on |w| one verifies that

gq(w, f) =


g

(1)

s(1)
(w, f (1)) ∨ g(2)

s(2)
(w, f (2)), if q = s,

g
(i)
q (w, f (i)), if q ∈ Q(i) with i ∈ {1, 2},

for q ∈ Q and w ∈ Σ∗.

The construction of an AFA

A = A(1) ∧A(2) = (Q,Σ, s, F, g)

such that L(A(1) ∧A(2)) = L(A(1)) ∩L(A(2)) is similar. With Q as above, one
defines

F =

{
F (1) ∪ F (2), if s(1) 6∈ F (1) or s(2) 6∈ F (2),
F (1) ∪ F (2) ∪ {s}, otherwise.

25

and

gq(a, u) =


g

(i)
q (a, u

∣∣
Q(i)), if q ∈ Q(i) with i ∈ {1, 2},

g
(1)

s(1)
(a, u

∣∣
Q(1)) ∧ g

(2)

s(2)
(a, u

∣∣
Q(2)), if q = s.

where q ∈ Q, a ∈ Σ, and u ∈ BQ. One then proves that L(A) is indeed the
intersection of the two languages.

Theorem 3 L(A(1) ∧A(2)) = L(A(1)) ∩ L(A(2)).

Example 4 Let the AFA A(1) = (Q(1),Σ, s(1), F (1), g(1)) where Q(1) =
{1, 2, 3, 4}, Σ = {a, b}, s(1) = {1}, F (1) = {1, 4} , and g(1) is given as follows.

L(A(1)) : x1 = a · (x2 ∨ x3) + b · (x2 ∨ x3 ∨ x4) + ε

x2 = a · (x2 ∨ x3 ∧ x4) + b · (x2 ∧ x3 ∧ x4)

x3 = a · (x2 ∧ x3 ∨ x3 ∧ x4 ∨ x3 ∧ x4) + b · (x2 ∧ x3 ∧ x4)

x4 = a · (x2 ∧ x3 ∨ x2 ∧ x4 ∨ x3 ∧ x4) + b · (x2 ∧ x3 ∧ x4) + ε

Let the AFA A(2) = (Q(2),Σ, s(2), F (2), g(2)) where Q(2) = {5, 6, 7}, Σ = {a, b},
s(2) = {5}, F (2) = {5, 7} and g(2) is given as follows.

L(A(2)) : x5 = a · (x5) + b · (x5 ∧ x6 ∨ x5 ∧ x7 ∨ x5 ∧ x6 ∧ x7) + ε

x6 = a · (x6) + b · (x6 ∧ x7 + x6 ∧ x7)

x7 = a · (x7) + b · (x7 ∧ x5 ∧ x6) + ε

A(1) ∧A(2) = (Q,Σ, s, F, g) where Q = {1, 2, 3, 4, 5, 6, 7}, Σ = {a, b}, s = {0},
F = {1, 4, 5, 7}, L(A(1) ∧A(2)) = L(A(1)) ∩ L(A(2)) , and g as follows.

x0 = a · ((x2 ∨ x3) ∧ x5) + b · ((x2 ∨ x3 ∨ x4) ∧
(x5 ∧ x6 ∨ x5 ∧ x7 ∨ x5 ∧ x6 ∧ x7)) + ε

x1 = a · (x2 ∨ x3) + b · (x2 ∨ x3 ∨ x4) + ε

x2 = a · (x2 ∨ x3 ∧ x4) + b · (x2 ∧ x3 ∧ x4)

x3 = a · (x2 ∧ x3 ∨ x3 ∧ x4 ∨ x3 ∧ x4) + +b · (x2 ∧ x3 ∧ x4)

x4 = a · (x2 ∧ x3 ∨ x2 ∧ x4 ∨ x3 ∧ x4) + b · (x2 ∧ x3 ∧ x4) + ε

x5 = a · (x5) + b · (x5 ∧ x6 ∨ x5 ∧ x7 ∨ x5 ∧ x6 ∧ x7) + ε

x6 = a · (x6) + b · (x6 ∧ x7 + x6 ∧ x7)

x7 = a · (x7) + b · (x7 ∧ x5 ∧ x6) + ε

Other proofs are quite similar and omitted due to lack of space. A summary
is as follows.

26

Proposition 3 Language Equations are closed under concatenation, union,
complement, intersection, Kleene star operations. That is, L(A(1) · A(2)) =
L(A(1)) · L(A(2)), L(A(1) ∨ A(2)) = L(A(1)) ∪ L(A(2)), L(A), L(A(1) ∧ A(2)) =

L(A(1)) ∩ L(A(2)), and (L(A))
∗

=
⋃∞

i=0 (L(A))
i.

5 Equations over Languages

Finite automata are represented as systems of language equations with two op-
erations, union and concatenation. The relevant properties of these equations,
such that existence and uniqueness of their solutions have been established in
the literature. For instance, the equation X = αX + β, where α and β are
fixed languages, and it is well-known by Arden’s Lemma that the equation has
α∗β as solution and if the empty word ε /∈ α, then it is the only solution.

Theorem 4 [7] Let A be the equational representation of A. Let s be the
starting state of A. Then the solution for Xs is exactly the language accepted
by A. Furthermore, the system of equations of the form (1) has a unique
solution for each Xq ∈ Q and the solution for each Xq is regular.

Example 5 Given the AFA A = (Q,Σ, s, F, g), where Q = {1, 2, 3}, Σ =
{a, b}, s = 1, F = {3} and g is given by the following system of language
equations. The regular language L(A) generated by A is obtained by solving
the following system of language equations. The subscript operators ∗ and +
indicate the Kleene star and Kleene plus operators, respectively.

x1 = a · (x1 ∨ x2) + b · x3

x2 = a · x1 + b · (x1 ∨ x3)

x3 = ε

The regular language accepted by the AFA A is obtained by solving the above
system of language equations. That is, x0 = ab∗a.

6 Conclusion

Regular expressions have been always centered around NFA and DFA covered
in theoretical CS courses. With considerably fewer states than DFA and even
NFA, AFA are a generalization of NFA and provide a powerful abstraction
layer beyond nondeterminism. Moreover, they are a key ingredient in model-
ing many software systems, parallel computations, and characterizing model
checking algorithms. Language equations have always been far from being well
understood in the context of NFA and DFA, but AFA equations, and not the
transition diagrams, are in essence the underlying algebraic framework that

27

makes AFA appealing from the point of view of representation and flexibility.
However, the systems of equations to be considered involve Boolean expressions
over a finite set X of variables and the symbols of an alphabet Σ. The solutions
of such systems of equations are precisely the class of regular languages. These
language equations may not always be easy to solve algebraically despite being
attractive from a theoretical point of view.

References

[1] D. Angluin, S. Eisenstat, and D. Fisman. Learning regular languages via
alternating automata. In Proceedings of the 24th Int. Joint Conference on
Artificial Intelligence, pages 3308–3314. IAAA Press, 2017.

[2] F. Baader and A. Okhotin. On language equations with one-sided con-
catenation. Fundamental Informaticae, 126:1–34, 2013.

[3] S. Berndt, Lutter M. Liskiewicz, M., and R. Reischuk. Learning residual
alternating automata. In Proceedings of the 31st AAAI conference on
artificial intelligence, pages 1749–1755. IAAA Press, 2017.

[4] J. A. Brzozowski and E. L. Leiss. On equations for regular languages,
finite automata, and sequential networks. Theoret. Comput. Sci., 10:19–
35, 1980.

[5] A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. J. ACM,
28:114–133, 1981.

[6] L. D’Antoni, Z. Kincaid, and F. Wang. A symbolic decision procedure
for symbolic alternating finite automata. Electronic Notes in Theoret.
Comput. Sci., 336:79–99, 2018.

[7] A. Fellah. Equations and regular-like expressions for afa. Int. J. of Com-
put. Math, 51(3-4):157–172, 1994.

[8] A. Fellah. Real-time languages, timed alternating automata, and timed
temporal logics: Relationships and specifications. J. Procedia Computer,
62:47–54, 2015.

[9] A. Fellah, H. Jürgensen, and S. Yu. Constructions for alternating finite
automata. Int. J. of Comput. Math., 35:117–132, 1992.

[10] J.E. Hopcroft, R. Motwani, and Ullman J.D. Introduction to automata
theory, languages, and computation. Addison-Wesley, Boston, 2001.

[11] J. Kavitha, L. Jeganathan, and G. Sethuraman. Descriptional complex-
ity of alternating finite automta. In Procedings of the Int. Workshop on
Descriptional Complexity of Formal Systems, pages 188—198, 2016.

28

