
Moving Towards Program Comprehension in

Software Development: A Case Study

Abdelaziz Fellah and Ajay Bandi

School of Computer Science and Information Systems

Northwest Missouri State University

Maryville, MO USA

{afellah, ajay}@nwmissouri.edu

Mahmoud Yousef

Dept. of Mathematics and Computer Science

University of Central Missouri

Warrensburg, MO USA

yousef@ucmo.edu

Abstract—The goal of this paper aims at promoting program
comprehension in computer science, in particular software engi-
neering and object-oriented programming courses. The research
methodology is evaluated through an empirical study which
involves an active participation audience of undergraduate and
graduate computer science students. With no previous knowl-
edge on program comprehension, participants were explicitly
instructed to use their computing skills and own strategies to
comprehend a set of Java programs of different difficulty levels.
We did not impose on the participants any specific paradigm to
comprehend the source code. We conducted three case studies
with two groups of students, and the results were promising,
despite of the fact that students had no previous knowledge of
program comprehension. The results of this study shows that
participants identified four dimensions to comprehend the source
code - namely input/output activities, visual scanning, computer
science knowledge, and application domain. In addition, the re-
sults provided strong evidence for the validation of the hypotheses
that we formulated earlier before conducting the case studies.
Another factor worth mentioning is the indentation of the code
which might play a role in debugging.

Index Terms—Program comprehension software engineering,
program understanding, source code comprehension mental mod-
els

I. INTRODUCTION

In a world where technologies change rapidly, software

developers spend a substantial amount of time trying to

understand a piece of software and comprehend its source

code to meet new challenging requirements. We refer to

such a discipline in software engineering as program com-

prehension. In the literature, other research terms such as

program understanding and source code comprehension, are

also used to describe program comprehension. For years,

researchers have attempted to understand how developers

comprehend the source code and numerous approaches have

been proposed, such as mental and cognitive models, software

visualization, empirical evaluation, top-down, and bottom-up

program comprehension [2], [3], [9], [12], [17]. Most of these

approaches and models are grounded in case-based studies

and geared towards experienced developers. As software is

often not properly documented, automated tools such as static

code analysis and trace visualization are used to facilitate the

program comprehension process.

Although program comprehension has been considered as an

area of research, little exploration has been done to evaluate its

viability as a learning programming activity in the classroom.

In its most basic form, program comprehension can be intro-

duced in a classroom setting under various formats and levels

for improving student learning. Thus, the development of

techniques and tools that support the program comprehension

process can make a significant contribution to students’ com-

puting and programming skills. For example in programming

courses, students should be able to discern an instance of an

existing source code using program comprehension activities,

generating basic ideas, and conveying valuable insights about

such a code.

In this paper, we are not claiming that we developed a

general and conclusive program comprehension framework

to be adopted in the classroom. However, our goal is to

add values of program comprehension to computer science

courses, in particular software engineering and programming

courses. This will provide students with a number of starting

points, from which they gain deep insights into other avenues

of software development such as maintenance and evolution.

Thus, our intention is to integrate a small scale of program

comprehension activities in such courses, as a software pro-

cess, in order for students to navigate through the source

code, and build a mental bridge between the source code and

the program behavior. For example, undergraduate students in

subsequent programming courses are often given programming

assignments to be modified using a new language and system

platform. Students spend time comprehending the program-

ming assignment, syntactically and semantically, before they

attempt to modify the program, whereas software engineering

students face often the same challenge, except with larger and

complex programs.

In this empirical study, the participants were undergraduate

and graduate computer science students enrolled in software

engineering and object-oriented programming, respectively.

Student characteristics and materials that have supported this

study will be discussed in the next sections. In this paper, the

terms, participants and students, define the same entity and

are interchangeable. Our research methodology is evaluated

Proceedings of the Fourth International Conference on Computing Methodologies and Communication (ICCMC 2020)
IEEE Xplore Part Number:CFP20K25-ART; ISBN:978-1-7281-4889-2

978-1-7281-4889-2/20/$31.00 ©2020 IEEE 660

20
20

 F
ou

rt
h

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

om
pu

tin
g

M
et

ho
do

lo
gi

es
 a

nd
 C

om
m

un
ic

at
io

n
(I

C
C

M
C

)
97

8-
1-

72
81

-4
88

9-
2/

20
/$

31
.0

0
©

20
20

 I
E

E
E

 1
0.

11
09

/I
C

C
M

C
48

09
2.

20
20

.I
C

C
M

C
-0

00
12

2

through three case studies described later in the remaining of

this paper. The case studies consist of three Java programs

of different levels of difficulty and complemented with a

series of object-oriented features. In this study, our focus

was not based on any technical framework. However, our

goal is to identify program comprehension patterns used by

the participants. Furthermore, each Java program has its own

characteristic in terms of i.e., size of the code, domain, code

style and complexity, attributes, number of methods, and code

snippets. Consequently, each case study may involve different

program comprehension activities in terms of understanding

the program’s inner behavior. The focus of students’ attention

is to comprehend each Java program and build a higher-

level mental model of the source code under study. We

did not impose on the participants any specific paradigm

of comprehending the case studies, and students were not

prescribed to any specific approach. However, they resort to

their own strategies to navigate through the Java source code

and decipher some idea of what the program is doing.

Based on our own experience and prior knowledge of the

participants in other computer science courses, have led us

to intentionally formulate a set of hypotheses in advance and

then validate them at the end of this study. In addition, in

order to reduce bias by a single researcher and validate the

soundness of our approach, this study has been conducted

by two researchers and two teaching assistants using the

same settings and metrics (i.e. projects, participants, resources,

procedure, classroom environment). The results from each

individual researcher were merged and analyzed in this paper.

The structure of the paper is organized as follows. In section

II, we survey the related work and research challenges that

appear in program comprehension. Section III discusses the

research methodology in terms of research hypotheses, partic-

ipants’ characteristics, case studies, survey, and data collection.

Section IV evaluates and analyzes our approach, and in Section

V we conclude with a summary of our methodology, and

findings, and expectations in the near future.

II. BACKGROUND AND RELATED WORK

Numerous program comprehension strategies have been

suggested in literature, which focus on helping a developer

to gain an understanding of a source code and comprehension

of its program behavior. Research has shown that source code

and program behavior are the most addressed parts of program

comprehension [8]. In this section, we briefly summarize a

number of program comprehension strategies from which a

developer can choose from, without strictly predicting any

particular model in advance. For example, a mental model

of von Mayrhauser and Vans [13] suggests that developers

build a mental or conceptual representation of the source code

under consideration including the system‘s control and data

flow. On the other hand, cognitive model [2], [6], [19] consists

of the knowledge base of the programmer such as domain-

related knowledge, language-related programming knowledge,

and temporary information structures. All of these form the

mental representation, which the developer builds from the

code source while comprehending the system. Developers also

use the assimilation process to reconstruct general knowl-

edge links between a problem domain and a source code.

For example, top-down comprehension has been used as a

strategy by developers for reconstructing knowledge about the

domain of the program and then map this knowledge into

the source code. On the other hand, after a source code is

read, bottom-up comprehension models abstract the lines of

code into higher-level abstractions. For example, a limitation

of top-down comprehension is that novices who are lacking

domain knowledge cannot use this approach. Developers are

known to mainly focus on the source code itself, rather than

documentation and other artifacts [10]. Several techniques

have been used to delve into the source code, such as object-

oriented paradigm, feature-orientation, annotations, functional

decomposition, and supporting tools. Despite such studies, it

is still not definitive whether such techniques have a positive

impact on the developer’s capabilities to understand a program

[10]. Nonetheless, our empirical study is partially inspired by

these guidelines and strategies. Software visualization tech-

niques and tools have also been proposed to assist developers

for exploring the comprehension process and visualizing the

run-time behavior of programs. An area of research that has

not received much attention is program comprehension in the

context of real-time systems. The software space of program

comprehension has been extended to real-time systems in [4],

[5]. Furthermore, two orthogonal and hybrid paradigms, timed

event component comprehension and timed event program

comprehension, have been introduced and complemented with

an empirical IoT irrigation case study [4]. Software visual-

ization models, in particular graph-visualization tools (i.e.,

Imagix 4D, Klocwork, SHriMP) have also been developed

to augment existing evaluation mechanisms in the context of

program comprehension [1], [11], [14], [15], [18]. Overall,

visualization ambition is apparent in program comprehension,

but has limited success because of the level of abstraction

details and depth to be viewed. These views are based on

the characteristics of the domain model that incorporates both

behavior and data [7], [16].

III. METHODOLOGY

A. Research Hypotheses

Our initial research hypotheses (i.e., predictions) are based

on prior knowledge and observations of the participants in

other programming courses. Then, we perform a set of case

studies to confirm whether they support the following predic-

tions.

Hypothesis H1: Input/Output activity

Our first and instinctive prediction is that participants will

mainly focused on input/output (I/O) activities by running the

program rather than understanding the program itself.

Proceedings of the Fourth International Conference on Computing Methodologies and Communication (ICCMC 2020)
IEEE Xplore Part Number:CFP20K25-ART; ISBN:978-1-7281-4889-2

978-1-7281-4889-2/20/$31.00 ©2020 IEEE 661

Hypothesis H2: Visual scanning

Our second alternative prediction is that participants will be

performing program comprehension tasks, such as scanning

and reading source code, positioning eyes, indentations, and

locating interesting parts of the source code to form a mental

model. In addition, intentional naming and meaning of the

identifiers in the source code can have an influence on recov-

ering and extracting specifications closer to the application do-

main. All of these can have an influence on the comprehension

and would help participants in understanding programs. Thus,

participants form a mental model which is a representation of

the program under investigation.

Hypothesis H3: Computer Science knowledge

Participants use a lot of computer science knowledge (i.e.,

programming languages, diagramming, naming convention)

and attempt to formulate some ideas about the source code

starting from what they already knew. The topics covered in

this computer science knowledge is closely related to students‘

computer science background.

Hypothesis H4: Application Domain

Students will try to map program entities and domain concepts

which may lead to a better program comprehension. That

is, participants have some prior knowledge at hand about

the problem domain and consequently this reveals almost

everything how the program works.

B. Participants

The participants were computer science students enrolled

in software engineering and object-oriented programming

courses. Most of the students in software engineering were

undergraduates in the third or fourth year with good knowledge

of Java. We refer to such a group of students as novices and

their ages vary from 19 to 22. The other group of partic-

ipants are graduate students enrolled in the object-oriented

programming course and with two years of work experience.

We refer to such a group of students as proficients and their

ages vary from 22 to 26. This study was conducted practically

by 48 students, 30 novices and 18 proficients. The group

of proficients was substantially smaller than that of novices.

There was no pretest to select participants in terms of levels

of knowledge or programming experience. Each individual

student aggregates a unit of result which in turn is analyzed

within the corresponding case study.

C. Case Studies

To evaluate the effectiveness of our study, we have con-

ducted a case study on three different Java programs where

each case is centered around some object-oriented program-

ming features.

Flesch-Kincaid:

This simple program is based on the Flesch-Kincaid readabil-

ity test which is used to determine how difficult a passage

of text is to be read by kids. For example, a score of 7.4

indicates that the text is understood by an average student in

7th grade. Details of the test are provided by Wikipedia at

https://en.wikipedia.org/wiki/Flesch.

Pac-Man:

The second Pac-Man programming problem is of medium

difficulty and it is a comprehensive exercise in the sense that

the students are equipped with domain-general knowledge of

the problem. This case study exposes occurrences of polymor-

phism, late binding, and object interactions. For details, refer

to https://en.wikipedia.org/wiki/Pac-Man.

Othello:

The Othello complex problem (i.e., inheritance, interfaces,

GUI) is an online tragedy game often performed by pro-

fessional and community theatre alike and where individuals

can play this game against other players from around the

world. It has been the source for numerous games, films,

and literary adaptations. This case study exposes occurrences

of polymorphism, late binding, and object interactions. For

details, refer to https://en.wikipedia.org/wiki/Othello.

Table I shows the experiment containing three Java pro-

grams of different difficulty levels, easy, moderate, and diffi-

cult. In addition, the complexity of each program is reflected

by the numbers of attributes, classes, and methods. For ex-

ample, the difficulties in program Othello are expressive in

terms polymorphic classes, GU, interfaces, and inheritance.

This subsequently leads to difficulties in understanding the

program by participants, in particular proficients.

Program Names

Program’s Attributes Flesch-
Kincaid

Pac-Man Othello

Complexity Level easy moderate difficult

Number of Classes
and snippets 3 and 0 13 and 0 23 and 21

Number of Methods 6 34 48

Number of Statements 148 363 2164

Comments
in Programs no partial partial

Identifiers’ Meanings meaningless meaningful,
meaningless

meaningful,
meaningless

TABLE I. Flesh-Kindcaid, Pac-Man, and Othello Java programs.

D. Data Collection

We started off each session by a short introduction of the

study goals to the participants. We introduced program com-

prehension as the task of trying to understand a program (i.e.,

source code) and how it works. We also emphasized on the

rational behind the study and why we were interested in,

that is, program comprehension is an important process of

developing and maintaining software, and whether it should

be broadly explored in the classroom. We also assured the

participants of the anonymity and confidentiality of the data

collected. In order to gain some insight about the study, we

surveyed the participants using a questionnaire which has

served as a guidance to explore whether the participants have

any knowledge of program comprehension. At the time of

the assessment, participants completed a short questionnaire

Proceedings of the Fourth International Conference on Computing Methodologies and Communication (ICCMC 2020)
IEEE Xplore Part Number:CFP20K25-ART; ISBN:978-1-7281-4889-2

978-1-7281-4889-2/20/$31.00 ©2020 IEEE 662

and were asked how much they known about the topic. The

questionnaire consists of five questions stated as follows:

Note: Other similar terms for program comprehension are

“program understanding” and “source code comprehension”.

1) I have never heard of program comprehension or similar

terms and have no idea what they are.

O Strongly disagree O Disagree O Neither agree nor

disagree O Agree O Strongly agree

2) In general, I know what program comprehension or

similar terms are, but I have not used them.

O Strongly disagree O Disagree O Neither agree nor

disagree O Agree O Strongly agree

3) To some extent, I have some familiarity with program

comprehension or similar terms, but I have not used

them.

O Strongly disagree O Disagree O Neither agree nor

disagree O Agree O Strongly agree

4) I have used program comprehension or similar terms few

times in other courses and projects.

O Strongly disagree O Disagree O Neither agree nor

disagree O Agree O Strongly agree

5) I have often used program comprehension or similar

terms in other curses and projects.

O Strongly disagree O Disagree O Neither agree nor

disagree O Agree O Strongly agree

The answers extracted from this questionnaire is all partic-

ipants, novices and proficients, have never heard of program

comprehension or similar terminologies. Therefore, the results

constitute a representative audience for our study. The study

was performed through two sessions, which took place at

Northwest Missouri State University, and supervised by two

faculty members and two teaching assistants. The experiment

is conducted on laptops that have similar characteristics and

with a fully configured NetBeans. Participants were not aware

of the goal of the experiment in advance and were refrained

from sharing information with other participants during the

session. However, participant were briefly enlightened on the

main idea behind the objective of the study. We did not impose

nor provide any specific paradigm of comprehending the Java

programs that we provided, and the participants are not forced

to any specific approach.

IV. RESULTS AND ANALYSIS

In each Java program, the participants started to understand

the program through its execution traces, which was not an

easy task in Othello because it is too complicated and large to

be comprehended directly. The domain knowledge of the Pac-

Man program was communicated through the names of identi-

fiers, Blinky (B), Pinky(Y), Inky (I), or Clyde (C), which turns

out to be ghosts from Pac-Man. Overall, identifiers are the

most common source of information in all programs as they

link the source code to the problem‘s domain. Both novices

and proficients were able to comprehend the source code

in just a few minutes. However, in the Flesch-Kincaid pro-

gram, participants employed the input/output strategy, which is

complemented by reading and visual scanning comprehension

skills to further facilitate the comprehension process. Without

any domain knowledge, Othello has remained a challenge for

proficient students. However, in the short program, Flesch-

Kincaid, there was no significant difference between novices

and proficients with respect to comprehend the program in just

a few minutes. Some novice students have prior knowledge

and previous experiences implementing similar programs such

as Othello. This has been shown in their performance (see

Table II). In section III, we formulated several comprehension

hypotheses before starting the experiment and the results have

provided strong evidence for validating the hypotheses. Half

of the participants in each group were not able to come up

with all relevant test case scenarios. Thus, they were not able

to establish a connection between the different parts of the

program and different subsequent testing scenarios. We noticed

that in a single program, some of the participants switched

between multiple program comprehension hypotheses when

faced with difficulties as we predicted.

In our study, we did not consider the age aspect of the

participants. However, we focused on novices and proficients

as the only indicators which differentiate between the partici-

pants. Table III shows a rubric of novices’ and proficients’ per-

formances throughout Flesch-Kincaid, Pac-Man, and Othello

programs. The novice’s and profiency‘s ratings in this rubric

showed that both Flesch-Kincaid and Pac-Man programs are

suitable to participants’ levels.

Program Names

Techniques used Flesch- Pac-Man Othello
(Hypotheses) Kincaid

Try/Succes Try/Success Try/Success

Input/Output
Activities 63% vs. 95% 84% vs. 69% 35% vs. 48%

Visual Scanning
67% vs. 45% 34% vs. 88% 45% vs. 33%

Computer Science
Knowledge 7% vs. 43% 64% vs. 10% 42% vs. 28%

Application Domain 12% vs. 23% 95% vs. 87% 56% vs. 63%

TABLE II. Novices’ performance.

Program Names

Techniques used Flesch- Pac-Man Othello
(Hypotheses) Kincaid

Try/Success Try/Success Try/Success

Input/Output
Activities 77% vs. 88% 90% vs. 55% 18% vs. 0%

Visual Scanning
53% vs. 65% 87% vs. 76% 2% vs. 0%

Computer Science
Knowledge 31% vs. 56% 67% vs. 33% 12% vs. 4%

Application Domain 8% vs. 4% 94% vs. 87% 7% vs. 0%

TABLE III. Proficients’ performance (Try/Success

The tuple (Try/Success) indicates the degree to which the

program comprehension approach used attained a successful

outcome. For example, 63% of novices used input/output

activities (dynamic analysis) on the Flesh-Kindcaid program

Proceedings of the Fourth International Conference on Computing Methodologies and Communication (ICCMC 2020)
IEEE Xplore Part Number:CFP20K25-ART; ISBN:978-1-7281-4889-2

978-1-7281-4889-2/20/$31.00 ©2020 IEEE 663

and 95% were able to build a mental representation that relates

the program’s functionality to its source code. The greatest

challenge for proficients is in the Othello program which

involves inheritance and GUI.

In our case study, out of 48 participants, 30 were novices,

and 18 were proficients. Table II and Table III show the

summary of how participants performed in each Java program

using different dimension of program comprehension. From

Table III, the majority of the participants (84%) tried

input/output activities on the Pac-Man program. Of these

84% of novices who tried the Pac-Man program using I/O

activities, 69% of them succeeded. These I/O activities are

similar to the black-box testing. In other words, participants

selected an input scenario and observed the corresponding

output. This activity helped participants to understand the

overall functionality of the program. Since Pac-Man is a

well-known game to participants, and the names of the

identifiers are meaningful in the source code, computer

science knowledge and domain knowledge helped novices

succeed and able to execute the source code. Othello is one

of the programs with a higher difficulty level, complicated

source code, and with partial comments. Of all the three

programs, participants were less successful in executing the

program. However, novices comprehended the program better

when compared to proficients. The reason is that novices had

prior knowledge of the domain application. Therefore, domain

knowledge and computer science knowledge played a vital

role in comprehending the source code. In comprehending the

Flesh-Kincaid source code, the majority of the participants

tried and succeed by scanning the source code visually. The

reason is the participants read the source code well and

understand because the level of difficulty of the program is

low.

The data gathered from this study gives insights about

how participants followed their own comprehension instinct

depending on several factors, which includes Java problems

at hand, type of applications, and participants’ skills. We

noticed that both novices and proficients have performed

I/O activities and visual scanning program comprehension

activities in Flesh-Kincaid and Pac-Man programs. The results

from our study as stated in Table II and Table III, validate

our initial hypotheses, H1 and H2. However, for Othello,

polymorphism which was difficult to debug has a negative

impact on the participants, especially proficients. A possible

justification is that novices were familiar to some extent

with the Othello program while proficients have very limited

knowledge about the application domain. Overall, the results

showed that program comprehension activities depend on the

problem context and there is no generic pattern to follow.

V. CONCLUSION

The goal of this paper aims at promoting program compre-

hension in software engineering and computer programming

courses. We completed our work by exposing novice and profi-

cient students to the concept of program comprehension, which

is not part of the computer science or software engineering

curricula. We ran the experiment with two groups of students

and the results were promising, despite of the fact that students

had no previous knowledge of program comprehension. In

terms of correctness, the results turns out more convincing

that domain knowledge and dynamic analysis of the source

code are significantly important in comprehending programs.

Overall, we attempt to pave the way and lay a background

of program comprehension, an area of software engineering,

that has not received much attention at both undergraduate and

graduate levels and could be breathy investigated in various

directions. We also expect to replicate this study with a higher

number of participants and a larger code that could be refined

to address the issues raised in this study.

REFERENCES

[1] D. Erni A. Kuhn and O. Nierstrasz. Towards improving the men-
tal model of software developers through cartographic visualization.
arXiv:1001.2386.

[2] V. Murali B. Yuan and C. Jermaine. Abridging source code. In
Proceedings of the ACM on Programning Languages (OOPSLA 58:1),
pages 13–20, ACM New York, NY, USA, 2017. ACM.

[3] Di Penta M. Oliveto R. et al. De Lucia, A. Labeling source code with
information retrieval methods: an empirical study. Empirical Softw. Eng.,
19(5):1383–1420, 2004.

[4] Aziz Fellah and Ajay Bandi. Automata-based timed event program
comprehension for real-time systems. In Proceedings of FASSI 5th

International Conference on Fundamentals and Advances in Software

Systems Integration, pages 21–28, Nice, France, 2019. IARIA.

[5] Aziz Fellah and Ajay Bandi. On architectural decay prediction in
real-time software systems. In Proceedings of ISCA 28th International

Conference on Software Engineering and Data Engineering, pages 98–
100, San Diego, California, 2019. ISCA.

[6] Nathan Harris and Charmain Cilliers. A program beacon recognition
tool. In The 7th International Conference on Information Technology

Based Higher Education and Training, page 216225. IEEE, 2006.

[7] Yoshida N Kula RG Cruz AEC Fujiwara K Iida H Hongtanunam P,
Yang X. Reda: a web-based visualization tool for analyzing modern code
review dataset. In International conference on software maintenance and

evolution ICME”, page 605608. IEEE, 2014.

[8] Janet Siegmund Ivonne Schrter, Jacob Krger and Thomas Leich. Com-
prehending studies on program comprehension. In IEEE 25th Interna-

tional Conference on Program Comprehension (ICPC), pages 308–311.
IEEE, 2017.

[9] R. Ranca M. Allamanis M. Lapata J. Fowkes, P. Chanthirasegaran and
C. Sutton. Tassal: autofolding for source code summarization. In Pro-

ceedings of the 38th International Conference on Software Engineering

Companion, (ICSE 16), pages 649–652, ACM New York, NY, USA,
2016. ACM.

[10] Thorsten Berger Thomas Leich Gunter Saake Jacob Kruge, Gul Calkl.
Effects of explicit feature traceability on program comprehensi. In
Proceedings of the 27th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software

Engineering (ESEC/FSE), pages 338–349. ACM, 2019.

[11] M. Lanza and S. Ducasse. Polymetric views-a lightweight visual
approach to reverse engineering. IEEE Transactions on Software

Engineering, 29(9):782795, 2003.

[12] Storey M. A. Theories, methods and tools in program comprehension:
past, present and future. In Proceedings of the 13th International

Workshop on Program Comprehension (IWPC ’05), pages 181–191,
Washington DC, DC, USA, 2005. IEEE Computer Society.

[13] Anneliese Von Mayrhauser and A. Marie Vans. Program comprehension
during software maintenance and evolution. Computer, 28(8):44–55,
1995.

Proceedings of the Fourth International Conference on Computing Methodologies and Communication (ICCMC 2020)
IEEE Xplore Part Number:CFP20K25-ART; ISBN:978-1-7281-4889-2

978-1-7281-4889-2/20/$31.00 ©2020 IEEE 664

[14] Harald Gall Michele Lanza, Stphane Ducasse and Martin Pinzger. Code
crawler-an information visualization tool for program comprehension.
In In Proceedings of the 27th International Conference on Software

Engineering, page 672673. IEEE, 2005.
[15] Roper M. Pacione M.J. and Wood M. Code crawler-an information

visualization tool for program comprehension. In In Proceedings of the

27th International Conference on Software Engineering, pages 70–79.
IEEE, 2004.

[16] Ravindra Patel Rashmi Yadav and Abhay Kothari. Critical evaluation
of reverse engineering tool imagix 4d. SpringerPlus.

[17] J. Siegmund. Program comprehension: past, present, and future. In
Proceedings of the 23th Internationa Conference on Software Analy-

sis, Evolution, and Reengineering (SANER ’16), pages 13–20. IEEE
SANER, 2016.

[18] Margaret-Anne Storey. An interactive visualization environment for
exploring java programs: Shrimp views revisited. In Procedings of 9th

International Conference on Program Comprehension, page xviiixviii.
IEEE, 2011.

[19] S. Xu. A cognitive model for program comprehension. In Proceedings

of the 3rd International Conference on Software Engineering Research,

Management and Applications (ACIS ’05), pages 392–398, Montréal,
Canada, 2005.

Proceedings of the Fourth International Conference on Computing Methodologies and Communication (ICCMC 2020)
IEEE Xplore Part Number:CFP20K25-ART; ISBN:978-1-7281-4889-2

978-1-7281-4889-2/20/$31.00 ©2020 IEEE 665

