
A Survey of Self Healing of Software Faults:
Recent Advances and Research Challenges

Ajay Bandi
Mississippi State University

ab1370@msstate.edu

Edward B. Allen
Mississippi State University
edward.allen@computer.org

Tomasz Haupt
Mississippi State University

haupt@cavs.msstate.edu

Abstract

Autonomic computing is a biologically inspired

computing paradigm for managing large and
complex software systems. The four main aspects of
autonomic computing are: self-configuration, self-
healing, self-optimization, and self-protection. This
paper presents a survey to develop a taxonomy of
self-healing of software faults, to identify various
techniques to diagnose and recover from software
faults, and to note some research challenges in self-
healing of software systems. Our survey aims to
facilitate a fault based approach to self-healing
systems. We present a comprehensive tabular
overview of software faults, detection methods, and
recovery techniques.
Keywords: autonomic computing, self-healing, soft-
ware faults, literature

1. Introduction

The ever-increasing dependence on

cyberinfrastructure to perform tasks related to almost
all aspects of human activity has resulted in the
development of unprecedentedly complex software
systems that operate in large-scale, distributed,
heterogeneous environments. In addition to the
inherent complexity of the business logic, there is an
increasingly significant requisite for these software-
based systems to manage resource variability, ever-
changing user needs, and system faults. Designing
systems with the capability to reliably perform
specified tasks while compensating for such
demanding and fluctuating parameters has thus
become a grand challenge for software engineering.

The endeavor to answer this challenge
originated the concept of self-healing systems (and
autonomic computing in general, which involves also
self-configuration, self-optimization, and self-
protection). Self-healing can be defined as the
property of a system that enables it to first perceive
that is not operating correctly, then to make
adjustments to restore its normal operation. More
specifically, a self-healing system recognizes when it

is incapable of producing results according to
Quality of Service (QoS) (whether explicit or
implicit) specifications, due to unavailability of
resources, software faults, degradation of
performance, etc., and consequently makes necessary
adjustments to restore its capability to perform its
tasks. Both aspects of self-healing, detection of
anomalies and actual healing, are expected to be
performed autonomously, i.e., without explicit user
intervention. Instead, the behavior of the system is
defined by a set of high-level policies.

The field of self-healing is a new one, and
judging by the volume of the scholarly publications
on this subject, it has already attracted considerable
attention in computer science communities. The aim
of this paper it to analyze the current progress made
in this field. We mention our goals in Section 3.1

2. Related work

What are the research categories in existing self-

healing of software system surveys? Several
researchers surveyed self healing systems in different
perspectives. Ghosh et al. [13] described the process
of self-healing systems and classified different
phases in self-healing software systems. They
described a self-healing process usually consists of
three steps: 1) maintenance of “health” 2) detection
of system faults and 3) recovery from system faults.
This survey categorized different techniques for
maintaining, detecting and recovery of the systems.
In addition, they mentioned a few application areas
of self-healing strategies such as grid computing,
software agent based computing, reflective
middleware, clustering etc. Keromytis [15] discussed
the self-healing of software failures especially using
structural changes to the software under protection.
He mentioned several techniques to self-heal
software faults such as memory updates, data
structure repair etc.

Psaier and Dustdar [18] concentrated on
identifying principles by explaining the concepts and
evolution of self-healing systems. Furthermore, they
discussed in detail the approaches and applications of

self-healing systems. Some of the approaches
mentioned in their survey are: separation of
concerns, intrusive versus non-intrusive, closed
versus open, detecting and reporting suspicious
behavior, diagnosing and policy selection, and
recovery techniques. Likewise the authors discussed
self-healing application areas in embedded systems,
operating systems, discovery systems, and
architecture based systems. However, our categories
are based on software faults which is different from
others work.

3. Research methodology

A literature survey is a procedure to identify,

synthesize and depict the published research based
on research questions. This is useful to identify
research opportunities from the existing literature.
We followed these steps to carry out this survey. 1)
Formulate goals/research questions. 2) Search and
select articles. 3) Extract data. 4) Synthesize data. 5)
Report the survey results.

3.1. Formulate goals/research questions

The main goal is to answer the question, “What

are the recent advances and current research
challenges in the automatic detection and correction
of software faults?” We also interested in how
software faults are categorized. Our categories are
different from the related work. This high level
question is subdivided into three other research
questions.

1. What are different types of software faults
identified in recent literature?

2. What techniques are used to detect software
failures automatically in recent literature?

3. What techniques are used to recover from
failures automatically in recent literature?

3.2. Search and selection of articles

We exhaustively searched articles from the

following databases using the keyword search strings
similar to (self-healing OR self healing) AND
software AND (survey OR review): ACM Digital
Library, Computer Science Index, Google Scholar,
IEEE Xplore, Proquest (dissertations and theses),
Scopus (Elsevier and Springer), and Web of Science.

Inclusion criteria: We selected survey/review
articles on self-healing software systems. The latest
survey paper we found had surveyed all the papers
until 2008 [18]. So we considered papers published
in 2009-2011 plus the earlier survey papers. We
included papers that focus especially on self-healing

of software faults (not hardware or communication
faults).

Exclusion criteria: We excluded papers that are
not related to our research questions, papers focused
on self-healing on biology topics, electrical power
grids, and other faults. Also, studies not in the
English language and invited talks are excluded.
Most of the excluded papers were eliminated after
reading the abstract, introduction and conclusions.

3.3. Data extraction

We use a data extraction form to collect these

data items: Bibliographic information (author, title,
source and year of publication), type of article
(journal/conference), goals of the paper, type of
software fault the author is trying to heal, and
techniques for automatically detecting and correcting
software faults. The first author extracted data from
all the selected papers and the other authors reviewed
the extracted data. This data from the selected papers
was synthesized to answer each research question in
Section 3.4

3.4. Report the survey results

Question 1. What are different types of software

faults identified in recent literature?
The self-healing of software faults taxonomy

was created by grouping similar types of software
faults into a single category from the observed
literature. Errors that related to similar characteristics
are grouped as a category. These software faults are
identified mainly in distributed systems, web
services, component-based, service-oriented systems,
web servers, and application servers. We categorized
errors in off-the shelf components as a separate
group and it consists of source code errors and other
integration problems. Failures in servers may be
caused intrusion or attack of malicious software and
other software faults in the servers.

Process errors consist of corrupted data
structures, un-handled exceptions, memory errors
and other process errors. Race conditions and
deadlocks are grouped as concurrency errors.
Changes in the environmental or missing
components, unanticipated changes in the
architectures and exception handling in service-based
processes management system, which could be
viewed as change in functionality or architecture of
workflow, are set in the degraded functionality
category. Degraded performance consists of response
time and QoS degradation. These categories are
explained in next paragraphs. Our taxonomy of
software faults in self-healing systems is shown in
Figure 1.

Question 2. What techniques are used to detect
software failures automatically in recent literature?

Question 3. What techniques are used to recover
from failures automatically in recent literature?

We combined the research questions 2 and 3 in
this subsection to answer them easily. Based on our
findings, we categorized the software faults into six
different categories. Table 1 shows the category, type
of software fault and automatic detection and
correction techniques.

Errors in Commercial-Off-The-Shelf (COTS)
software: Developers use third-party vendor software
modules/components called COTS. The source code
or documentation for these modules is typically not
available. Therefore, self-healing of COTS is
difficult. Several exceptions may arise when these
complex components integrate with software
systems. Chang et al. [5] proposed injection of
healing connectors into system to recover from in-
field errors in COTS. Gama and Donsez [11]
presented an autonomic approach of execution of
COTS outside the main application, in a sort of
sandbox without disturbing the trusted components.
Bisadi and Sharifi [3] used a cellular adaptation
method to self-heal components when the source
code is not available to manipulate. Errors in the
components are detected by monitoring the messages
passed through connectors when the components
exchange data between each other. By
reconfiguration of the component or by using
appropriate recovery policy from a repository, the
system can recover. Silva et al. [21] develop a
virtualization layer to recover data from off-the-shelf
application servers.

Failures in servers: Intrusions or attacks in the
application servers can be detected by monitoring
and checking for any violation of security policy.
Once the intrusion is encountered, proactive recovery
techniques are used to recover the application server
from intrusion [19]. Sidiroglou et al. [20] developed
the ASSURE system which introduces rescue points
that recover software from unknown faults. Rescue
points are locations in existing application code for
handling a given set of anticipated faults from a
larger class of unanticipated faults. Chen et al. [6]
developed SHelp which enables the system to
survive software faults in virtual machines. They use
error virtualization and weighted rescue points to
circumvent the fault paths. Error virtualization is the
method used to force heuristic-based error return in a
function.

Process errors: Errors in kernel data structures
are detected by comparing the run queue and task list
and these data structures are recovered by repair
plans [22]. Gaudin et al. [12] proposed an approach
to self-heal unhandled exceptions at run time. This is
based on the supervisory control approach. The
supervisor is embedded in the application through
instrumentation and controls the execution of the
program consulting with the Finite State Machine
(FSM), which is built from the method calls of the
Java application. The supervisor monitors for un-
handled exceptions consulting with the FSM. The
faulty sequence of method calls is derived by code
instrumentation.

Bond and McKinely [4] introduces leak pruning
to self-heal out-of-memory errors. These errors are
caused by double frees, dangling pointers, and buffer

Errors in COTS

Integration
incompatibility

Source code errors

Degraded functionality

Changes in
environmental
components/missing
components

Unanticipated changes
in architecture

Process errors

Un-handled
exceptions

Corrupted kernel
data structures

Memory Errors

Memory Leaks

Buffer overflow

Other errors

Failures in Servers

Other software
failures

Intrusions

Concurrency errors

Race conditions

Deadlocks

Degraded performance

QoS degradation

Throughput/
Response time

Exception handling in
service-based
processes management
system

Figure 1. Taxonomy of software faults in self-healing systems.

overflows. Such errors are detected when the
memory consumed is greater than a threshold value.
Memory recovery is obtained by pruning the selected
references. Dai et al. [8] proposed a new approach
called “consequence based self-healing” of memory
corruption by using multivariate decision diagrams,
neural networks and fuzzy logic. The consequences
and prescriptions should be predefined based on the
goals. The two types of consequences identified by
Dai et al. are context consequence (memory
consumption) and content consequence (state
variables in the program). A consequence based
approach diagnoses problems not only based on the
consequence contents but also on the severity level
of the consequence. Some of the recovery techniques
are reclaiming the leaked memory or restarting the
whole system from the latest check point depending
on the severity level. Andrzejak [2] advocates
discovering the process errors by monitoring online
data and performance modeling of the process and is
recovered by replicating the process.

Concurrency errors: Concurrency related bugs
are identified by failures in interactions between
threads. Recovery is achieved by additional
synchronizing or influencing scheduling [14]. Wang
et al. [23] prevented deadlocks by control logic using
code instrumentation.

Degraded functionality: Martinez and Dobson
[16] developed a decentralized component-based
Java framework for complex heterogeneous
distributed systems called “Functionality
Recomposition for Self-Healing” (FReSH). The
components can be methods, web services, and
procedures. Detection of operation disruptions can be
identified by lack of feedback between components
to the manager component. Recovery takes place by
recomposing any missing functionality by
dynamically identifying, reusing and self-assembling
software components. Andrade and de Araújo
Macêdo [1] discussed self-healing of unanticipated
architectural changes in distributed heterogeneous
environments. This paper describes a non-intrusive
component-based approach to detect changes by
monitoring data gathered by environment devices
and to recover by redeploying changes with an
updated configuration. Friedrich et al. [10] identified
another approach to exception handling in service
based processes management system, which could be
viewed as change in functionality or architecture of
workflow. This can be detected by model-based
diagnosis. A model based approach to repair
planning is used to recover the original process.

Degraded performance: Yu et al. [7] talk about
the self-healing of composite web services by using
performance predictions based on a semi-Markov
model. An error in a composite web service is
detected by monitoring the performance of the web
service and can be recovered by reselecting in
execution. Moo-Mena et al. [17] present Quality of
Service (QoS) parameters and a statistical model
approach to self-healing web services in
heterogeneous networks. An error is detected when
the QoS parameters are degraded.

4. Research challenges

In addition to challenges mentioned in other

surveys [13, 15, 18], we identify the following
challenges. Self-healing system architecture
incorporates the self-healing features during the
design phase of software development life cycle to
avoid the software faults that may occur in later
phases. Estwick [9] addressed design of a self
healing software architecture using business rules but
with constraints on the architectural style. This work
deals with single changes occurring within the
architecture. An open opportunity is to design self-
healing software architectures to accommodate more
than one change occur simultaneously within the
architecture.

Assurance of self-healing systems is another
research opportunity in self-healing systems. In
terms of biology, curing one disease may cause
another disease if the diagnosis or the treatment of
disease is incorrect. In self-healing systems, the
system along with detection and correction of faults,
should assure that when an error is detected it is in
fact real and the suggested recovery technique heals
the error without causing another error. Hrubá et al.
[14] used bounded model checking once the data
race error was found.

5. Conclusions

Our taxonomy of software faults in self-healing

systems shows promise. We observed in most of the
categories, software faults were detected by
monitoring and evaluation of data or messages.
Replication, repair plans, rescue points, recompose,
and reselecting techniques are widely used for
recovery of systems. Finally, we discussed research
opportunities in self-healing architectures and self-
healing systems assurance.

Table1. Detection and recovery of faults in self-healing software.

Category Type of fault Citation Detection Recovery
Errors in
COTS

Source code errors [3] — Messages passed
through connectors are
monitored

— Recovery policy from
policy repository or
reconfiguration of the
components

Integration
Incompatibility

[5] — When exceptions raised
by COTS components

— Injection of healing
connectors into the system

Failures in
servers

Intrusions [19] — Monitoring and
checking for any violation
of security
policy

— Proactive recovery

 Other software
failures

[6,20] — — Rescue points and error
virtualization

Process errors Corrupted kernel
data structures

[22] — Compare the run queue
and task list

— Repair plans

 Un-handled
exceptions

[12] — Supervisor monitors for
un-handled exceptions
consulting with FSM.

— The faulty sequence of
the method calls is derived
by code instrumentation.

 Memory leaks [4] — Monitoring heap
threshold

— Poison selected
references and reclaim
memory

 Buffer overflow [8] — Monitor for
consequence (buffer
overflow)

— Reclaim the leaked
memory or restart the
system

 Other process errors [2] — Monitor online data and
performance modeling of
the process

— Process replication

Concurrency
errors

Race conditions [14] — Dynamic analysis
(failure in response)

— Additional
synchronizing/
Influencing scheduling

 Deadlocks [23] — — Deadlocks can be
prevented by control logic
using code instrumentation

Degraded
functionality

Unanticipated
architectural changes

[1] — Periodic evaluation of
data gathered by the
environment devices

— Redeploy changes with
updated configuration

 Changes in
environmental
components /missing
components

[16] — Probing (feedback) — Dynamically recompose
components for
functionality

 Exception handling
in service-based
process management
system

[10] — Model-based diagnosis — Execution of model -
based repair plans

Degraded
performance

Throughput/response
time

[7] — Inspecting the response
time

—

 QoS degradation [17] — Monitor data of QoS
parameters

— Reselecting service

Acknowledgements

We would like to thank the Center for

Advanced Vehicular Systems (CAVS) at Mississippi
State University for their support. Also, thanks to
Mr. Bradley D. Brazzeal for help using EndNote.

References

[1] S. S. Andrade and R. J. de Araújo Macêdo, “A Non-

Intrusive Component-Based Approach for Deploying
Unanticipated Self-Management Behaviour,”
Proceedings of the 2009 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems
(SEAMS 2009). May 2009, pp. 152–161, IEEE.

[2] A. Andrzejak, “Generic Self-Healing via
Rejuvenation: Challenges, Status Quo, and Solutions,”
Proceedings: 2010 Fourth IEEE International
Conference on Self- Adaptive and Self-Organizing
Systems Workshop. Sept. 2010, pp. 239–242.

[3] M. Bisadi and M. Sharifi, “Component-Based Self-
Healing via Cellular Adaptation,” Proceedings: The
Fifth International Conference on Autonomic and
Autonomous Systems ICAS 2009, Valencia, Spain,
Apr. 2009, pp. 75–81, IEEE Computer Society.

[4] M. D. Bond and K. S. McKinley, “Leak pruning,”
Proceedings of the 14th International Conference on
Architectural Support for Programming Languages
and Operating Systems. 2009, pp. 277–288, ACM.

[5] H. Chang, L. Mariani, and M. Pezz´e, “In-field
healing of integration problems with COTS
components,” Proceedings: 2009 31st International
Conference on Software Engineering. May 2009, pp.
166–176, IEEE.

[6] G. Chen, H. Jin, D. Zou, B. B. Zhou, W. Qiang, and
G. Hu, “SHelp: Automatic Self-Healing for Multiple
Application Instances in a Virtual Machine
Environment,” Proceedings: 2010 IEEE International
Conference on Cluster Computing, Heraklion, Crete,
Greece, Sept. 2010, pp. 97–106.

[7] Y. Dai, L. Yang, and B. Zhang, “QoS-Driven Self-
Healing Web Service Composition Based on
Performance Prediction,” Journal of Computer
Science and Technology, vol. 24, no. 2, Mar. 2009, pp.
250–261.

[8] Y. S. Dai, Y. P. Xiang, Y. F. Li, L. D. Xing, and G.
W. Zhang, “Consequence Oriented Self-Healing and
Autonomous Diagnosis for Highly Reliable Systems
and Software,” IEEE Transactions on Reliability, vol.
60, no. 2, June 2011, pp. 369–380.

[9] A. C. Estwick, A Business Rules Approach to Self-
Healing Software Architecture, doctoral dissertation,
The George Washington University, Jan. 2011.

[10] G. Friedrich, M. Fugini, E. Muss, B. Pernici, and G.
Tagni, “Exception Handling for Repair in Service-
Based Processes,” IEEE Transactions on Software
Engineering, vol. 36, no. 2, March-April 2010, pp.
198–215.

[11] K. Gama and D. Donsez, “A Self-healing
Component Sandbox for Untrustworthy Third Party
Code Execution,” Component-Based Software

Engineering, vol. 6092 of LNCS, Springer Berlin,
2010, pp. 130–149.

[12] B. Gaudin, E. I. Vassev, P. Nixon, and M. Hinchey,
“A Control Theory Based Approach for Self-Healing
of Unhandled Runtime Exceptions,” Proceedings of
the 8th ACM International Conference on Autonomic
Computing, Karlsruhe, Germany, 2011, pp. 217–220.

[13] D. Ghosh, R. Sharman, H. R. Rao, and S. Upadhyaya,
“Self-Healing Systems—Survey and Synthesis,”
Decision Support Systems, vol. 42, no. 4, 2007, pp.
2164–2185.

[14] V. Hrubá, B. Křena, and T. Vojnar, “Self-healing
Assurance Based on Bounded Model Checking,”
Computer Aided Systems Theory—EUROCAST 2009,
vol. 5717 of Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, 2009, pp. 295–303.

[15] A. D. Keromytis, “Characterizing Self-Healing
Software Systems,” Proceedings of the 4th
International Conference on Mathematical Methods,
Models and Architecture for Computer Networks
Security, St. Petersburg, Russia, Sept. 2007.

[16] J. Martinez and S. Dobson, “Functionality
Recomposition for Self-healing,” - Proceedings of the
4th International Conference on Software and Data
Technologies. July 2009, pp. 159–164.

[17] F. Moo-Mena, J. Garcilazo-Ortiz, L. Basto-Díaz, F.
Curi- Quintal, S. Medina-Peralta, and F. Alonzo-
Canul, “A Diagnosis Module Based on Statistic and
QoS Techniques for Self-healing Architectures
Supporting WS based Applications,” International
Conference on Cyber-Enabled Distributed Computing
and Knowledge Discovery, 2009. CyberC ’09. Oct.
2009, pp. 163–169.

[18] H. Psaier and S. Dustdar, “A Survey on Self- Healing
Systems—Approaches and Systems,” Computing, vol.
87, no. 1, 2010, pp. 43–73.

[19] M. Qiang, Z. Rui-peng, and Y. Xiao-hui, “Design and
Implementation of an Intrusion-Tolerant Self-Healing
Application Server,” Proceedings: 2010 International
Conference on Communications and Intelligence
Information Security (ICCIIS), Oct. 2010, pp. 92–95.

[20] S. Sidiroglou, O. Laadan, C. Perez, N. Viennot, J.
Nieh, and A. D. Keromytis, “ASSURE: Automatic
Software Self-healing Using Rescue Points,”
Proceedings of the 14th International Conference on
Architectural Support for Programming Languages
and Operating Systems. 2009, pp. 37–48, ACM.

[21] L. M. Silva, J. Alonso, and J. Torres, “Using
Virtualization to Improve Software Rejuvenation,”
IEEE Transactions on Computers, vol. 58, no. 11,
Nov. 2009, pp. 1525–1538.

[22] L. Sun, D. K. Nilsson, T. Katori, and T. Nakajima,
Online Self-Healing Support for Embedded
Systems,” Proceedings of the 12th IEEE Inter-
national Symposium on Object/Component
/Service-Oriented Real-Time Distributed Com-
puting, Mar. 2009, pp. 283–287.

[23] Y. Wang, S. Lafortune, T. Kelly, M. Kudlur, and
S. Mahlke, “The Theory of Deadlock Avoidance via
Discrete Control,” Proceedings of the 36th Annual
ACMSIGPLAN-SIGACT Symposium on Principles of
Programming Languages. 2009, pp. 252–263, ACM

